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High-Frequency Sum-Rule Expansion for Relativistic 
Quasi-One-Dimensional Quantum Plasma Dielectric 
Tensor IV: Radiation Effect 
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A high-frequency sum-rule expansion for all transverse elements of the  relativis- 
tic quasi-one-dimensional quantum plasma dielectric tensor with spin particles 
at T = 0 K in a situation where the self-consistent magnetic radiation effect is 
appreciable is derived. It is found that radiation energy either reduces or 
enhances the dispersion for finite k, depending on the direction of propagation. 

1. INTRODUCTION 

High-frequency sum-rule expansions of the full response tensor both 
for nonrelativistic and relativistic nonmagnetized and magnetized quantum 
plasmas without and with spins at T = 0 K in a situation where the 
self-consistent magnetic radiation effect is not ignorable are known (Genga, 
1988a,b, 1992a, 1993a,b,d, 1994). However, in a situation where the self- 
consistent magnetic radiation effect is appreciable and hence not negligible, 
such as in neutron stars and pulsars, the known results pertain to those of 
relativistic nonmagnetized quantum plasmas (Genga, 1992b), nonrelativis- 
tic quasi-one-dimensional quantum plasmas (Genga, 1993c), and relativis- 
tic quasi-one-dimensional plasmas without spins (Genga, 1993d). 

In this work the behavior of the full dielectric tensor in an anisotropic 
system of relativistic quantum plasmas with spins at T = 0 K up to order 
co-5 is considered in a situation in which the self-consistent magnetic 
radiation effect is appreciable and therefore its contribution is not ignor- 
able as in astrophysical plasmas. Further, as in spinless magnetized quan- 
tum plasmas (Genga, 1993a, b), the treatment is restricted to situations in 
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which the order of the external magnetic field and the plasma particle 
density are 1015 G and 1029 particles per unit volume, respectively. At such 
superstrong magnetic fields, it is known (Canuto and Ventura, 1972; 
Genga, 1988b, 1992a, b, 1993a-d, 1994) that the Fermi energy of the 
electrons is lower than the excitation energy, i.e., PZ/m2,~. hf~ (where f~ is 
the electron cyclotron frequency); only the lowest n = 0 level is populated, 
leading the mobility of the electrons to be entirely determined by the value 
of momentum along the z axis, i.e., Pz, resulting in a quasi-one-dimensional 
plasma. The high-frequency sum rules are derived by using the Hamilto- 
nian formalism as in the above-mentioned nonrelativistic and relativistic 
cases. However, it is known (Goldstone, 1957; Jancovici, 1962; Genga, 
1992a,b, 1993b-d, 1994) that the electron may jump from one state inside 
the Fermi sphere to an unoccupied state and the process creates a hole 
behind known as a "Fermi hole." The jump of an electron from a 
negative-energy state to an occupied positive-electron-energy state results in 
creation of a positron-electron-energy pair with a positron as a hole 
known as a "Dirac hole." The interaction is therefore due to both the 
self-consistent radiation and Coulomb. Consequently, the system is de- 
scribed by a set of unperturbed states which allows for positrons, photons, 
and electrons. Therefore, an unperturbed state must be defined by the 
enumerator of particles (electrons outside of the Fermi sea), the "Fermi 
holes," the "Dirac holes," and the photons. Jancovici (1962) therefore 
found it convenient to describe the interaction in ~ the "old-fashioned" 
Coulomb gauge: only transverse photons exist and interact with electrons 
in addition to an unquantized Coulomb potential between the electrons 
(Goldstone, 1957). Thus, the Hamiltonian of the system is enlarged to 
include the photon degrees of freedom in order to allow the description by 
transverse interaction. 

For the sake of completeness, the derivation of the polarizability 
tensor is reviewed below. However, in  Section 2, the general relationships 
between the external or current-current response function sum-rule co- 
efficients and those of the dielectric tensor are given; further, the exact 09 -2, 
09 -3, co-4, c0-5 sum-rule coefficients are calculated. The long-wavelength 
limit of the results and the possible implications for the dispersion relation 
of high-frequency plasma modes are determined in Sections 2 and 4, 
respectively. 

The total electron current at point xi is given by 

e ~ [vir(x -- x,) + 6(x -- xi)v,] (1) j (x , )  = 

where vi is the group velocity of the free particle i with spins. The total 
energy for such a particle is given by (Johnson and Lippmann, 1949; 
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Berestetskii et  al., 1978; Baym, 1974; Sakurai, 1987; Bjorken and Drell, 
1964) 

where 

E = (FI 2 + m2c  4 - -  2 e c h B  ~ s)1/2 

H = P -- e AO(r ) = ~ Aqeq(ao~ eiq.r, + c.c.) 
C qa 

(2) 

U2~1/2 
~ =  I + T )  (61 

is the relativistic factor with 

1 
u = - -  [ 1 7  2 - ehB" s ]  1/2 ( 7 )  

m 

where 

is the generalized momentum, with 

A~ = ~B~ x r (4) 

the external vector potential, and 

= e_ 

c\ w4 ]  
where V = L 3 is the volume of the system, r = qc, m is the rest mass of  
the particle, r is the speed of  light in vacuum, and e~ is the unit polarization 
vectors satisfying the following conditions: (i) q �9 e = 0, which is obtained 
from the Coulomb gauge: V. A = 0, and ~ = 0, where ~ is the scalar 

ai . ~qj = (~era~qq,~a. In addition, aqa is the potential and a = 1, 2; and (ii) eq, 
Fourier amplitude canonical to the self-consistent field vector potential, 
and satisfying the condition 

aq~r = - -  i60 q a q ~  

while its corresponding Hamiltonian a~-, satisfies the condition 

a q  + = �9 + i(.Oq a qa  

The group velocity of  the free particle i, (v;) is obtained from equation (2) 
as  

-IIIi--, (5) 
v;  = ~  m 
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as the nonrelativistic phase velocity of the free particle with spins. In terms 
of the Fourier transform, equation (1) may be expressed as 

e2N 
( J~ (co) > = e < j~ (co) > - ~ y -~ T ~ A  o~(co) (8) 

where 

k~,k v 
Tf: = 6 "~ - k--- T- (9) 

Equation (8) is arrived at after taking first the Fourier transform of 
equation (1) followed by its expectation value; this is because the main 
interest is the response function of the electron system. Application of 
perturbation theory (Pines and Nozirres, 1966; Genga, 1988a,b, 1992a,b, 
1993a-c, 1994) gives 

<jr = e E coS'<olne(~)l"><nlrr-~(~ 
C nps 

x ~ _ cono(p, p + hk/2) + in 

1 ]AOv co 
c o _ c o . o ( p , p _ h k / 2 + i r l  k( ) (10) 

where 

1 
I-I~, = ~ ~ (v/~ e - i k ' ' '  + e -'~" X'vf) (11) 

The arguments of cono and the summation over p and s in equation 
(10) are such that P = P~, k = kz, and S = Sz. From equations (8) and (10) 
combined and Ohm's law, the conductivity tensor a~'(kco) is obtained to 
be of the form 

tr~(kco) = - -  ie2[  Z~(kco) + N ' - ' T ~ "  ] co (12) 

where ;~'V(kco) is the electron response tensor with spins given by 

:(kco) = Z <olnf,(~)In ><n [w_~(o)[o> 
rips 

[ 1 
x ~ --co,,o(P,P + hk/2) +i~ 

co - coco(P, P - hk/2) + it/ 
(13) 
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In terms of polarizability tensor ~V(ko9), equation (12) is expressed as 

4he 2 
~t'~(k~) = i - - ~  aUV(kog) 

(.0 2 
= t co-- ~ ? - l T[~ + 8/'~(kco) (14) 

where 

4~e 2 
8~V(k~) = - - -~-Z '~(kw)  (15) 

The matrix elements and excitation frequencies that appear in equation 
(15) are those appropriate to a system of electrons with Coulomb, external 
magnetic field, transverse photon, and spin interactions. 

2. TRANSVERSE SUM RULES 

The complete modified polarizability tensor 8UV(k~o) is known (Genga, 
1988a, b, 1992a,b, 1993a-d, 1994) to be expressible in terms of correspond- 
ing "external" quantities 8(ko9) as 

8(ko) = ~(kco)(A - ~(kog) - IA.  

where 

(16) 

with 

k - k  
T = ~ - - -  k 2 

4 =  1 

0 

Further, it is known (Genga, 1988a,b, 1992a,b, 1993a-d, 1994) that ~(kco) 
possess a high-frequency sum-rule expansion of the form 

(k) 
5-'. (18) 

I = 1  
1 = o d d  

A 

~H"~(kw) = -  2 f~fS,(k) 
1 = 2  ( D I + I  (19) 

{ ~ e v e n  

A = ~ - n 2 T  (17) 
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where the superscript H denotes "Hermitian part of," with prime and 
double prime standing for "real part of" and "imaginary part of," respec- 
tively. The f~U'(k) coefficients are obtained from the relation 

~V(k ) 4 ~ e 2  :2 
= ~ = - i ~ { [ c o ~ o ( P , P - - ? ) ]  ' -  (0t[I[(z) ]n)(n ]HL ~ (0) 10) 

T)] <0II-ILk(0) {n ><nTII[(z) 10>}, = 0 (20) 

The high-frequency expansion of 8~V(k) is similarly given by e~uations (18) 
and (19) with ~'~-l(k) coefficients replacing corresponding ~'~_l(k) co- 
efficients. The relationship between the two sets of coefficients up to l = 4 
is 

~V(k) = 6~V(k) 

~V(k) = f i~(k) 

~ ( k )  = fi~(k) - f i ~ ( k ) ~ ( k )  (21) 

The Hamiltonian of the system that satisfies equation (20) is therefore 

H=TT_2 . +1  ~ij U(Ixi--xJl)+'~h~176 (22) 

where U(Ix~-xj 1) is the interaction potential between a pair of particles, 
which is independent of velocity, and the third term on the right-hand of 
equation (22) is the Hamiltonian due to self-consistent magnetic radiation, 
with a +. and aq, as the "creation" and "annihilation or destruction" 
operators, respectively, for photons of momentum hq and polarization a 
satisfying the commutation relations (Harris, 1975; Berestetskii et al., 1978; 
Genga, 1993a, d) 

(23) 
+ "  [aqa, aq.~. ] = 0 

The third term on the right-hand side of equation (22) is obtained by 
arguing (Berestetskii et al., 1978) that Nq. = aq+~aq, is very large and, hence, 
this results in the matrix elements of these operators also being large; thus, 
unity on the right-hand side of the commutation rule in equation (23) is 
ignorable and therefore the commutation relation in equation (23) reduces 
to 

a+.aq. ~ + (24) -- a qaaqa 
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The operations aq+~ and aqc r therefore become commuting classical 
quantities which determine the classical field strengths in this situation. 
Further, Harris (1975) also argued that since the infinite zero-point energy 
hcoq/2 of the field is an additive constant, it will cancel out when a 
physically meaningful quantity is calculated and therefore the Hamiltonian 
due to radiation becomes 

H R  = ~,  hcoqNq~ (25) 
q~r 

The next step is to turn to the calculation of the frequency moments 
(up to l = 4). It is known (Genga, 1988b, 1992b, 1993a-d, 1994) that for 
an anisotropic system such as the one under consideration, ~"v(kco) is 
nondiagonal and hence both even and odd moments of ~f~_ l(k) exist. The 
real diagonal and off-diagonal elements are also known (Genga, 1988b, 
1992b, 1993a-d, 1994) to satisfy the symmetry condition 

~f~_ l(k) = ~ + l  (k) (26) 

whereas the imaginary off-diagonal elements satisfy the antisymmetry 
condition 

~'~_ t (k) = - ~ - i  (k) (27) 

The first moment gives rise to 

F.(olrIe(r ><f f lw_k(o) lo>  
fi~V(k) = 47re2 .~ L co.0(P, P + hk/2) 

+ coco(P, P -- hk/2) 1~ = o 

- 1 , . , , 2 r l , v  (28) ~ ',-~pX..~k 

where 

k ~ k  v 
L ~ =  k2 (29) 

The second moment yields 

~- v 4 n e 2 - -  
f~3 ~ (k) = - - ~  ~ [ <OlII ~ (z)In > (n Irv_ao)Io> 

- <oln _  (o)In )(n II-l~ (r)Io>]~ = o 
2zce 2 

- h t < o l t n e ( z ) ' m k ( O ) ]  --[1-ILk(O), ne(z)]lo>] =o 

=i7 2 2 e B ~  
- cop m----c rleuv~' (30) 
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The third moment leads to 

~4.~(k ) = 4rce2 _ [tO,,o(p, p _ _~_)(O[rlf,(z)ln ~ hk 

+og,,o(P,P +h-~)(O[rlLk(O)[n)(nlII~(z)[O)l~=o 

27ze 2 
= h2 (O[[[n~(~). ~ .  n~_k(O)l + ffrI,_~(o). Z-/l. ne(~)]to)l~=o 

_ v _ 4 c o ~ e B ~  0 2 . ~ 0 ~ �9 0 
-- Ox-UOx; + ie nl'xP ~x ~ -- ie ~ x Ox ~ " 2m2c "- ..~l-...~w~,~y 

e ~  eB~ -4 c~ ~ ~ o - 1  02 
-- ~mc (x~)Z l0 ) -y  2m2c k k (O[2mc(eB.) Ox~OxU 

o ~ ~ ~ ~ ( x ~ Y I o >  + i~ 'tPxa ~ x  ~ -- ie 'Wx ~ -- e ~'7 

02 0 
-- Y-4~176176 Ox"Ox ~ ie"~x" Ox" 

0 eB~ 10) - it~"~'x" dx---: + [~"'(x')2'~'" - ~"~x~'x~] 

2 4 1 "hi? -469 4hk2p-m--N~qa Nqa~"v"b)~-(.Oq ~ zl~v(S~- q - Sk)lO> 

(31) 

The fourth moment is given by 

~ ( k )  =4~e2--  { [Og.o(p ,p - - - f  ) ]  hk 2 . 

- [-o~,,o(P, P + h-ffk2 )~<O[H~,(O)[n >(n[II~(z)[O) }~=o 

2ne 2 
- h~ <oll:ffn~(r 1-11,/-I1, n ~ ( o ) : t  

- f f [m , , ( o ) ,  t-/l, t / ] ,  n~,(Ollo>lr = o 
2 0 _ . -6~  ~ .7 ~ 02 17 ~ , e B  ~ ~ 

- - y  4m~c k k " < O ~ a "  ~ + T s "  ~ x  me ax  ~ 

02 (-B~ -6a~2eB~ ~ v .7e  u~" 
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17 e u~" eB ~ (eB% 2 
q - 8  mc xP a--~--q-i7e"'n'm2;EOx +̀ (x++)210~> 

: o 32 02 
__ ? - 6  fOpeB~ k~k~< O l i 6e~  ~ + i6ev~ _ _  

4 m 2 c  OX%~X v OX~OX ~ 

3 0 2 3 _ ~eB ~ e v~eB ~ ~ 0 
+ i ~ eu++ ~ +-~ g/+'+ 6 t* ---~c + - -  x mc Ox v 

o 2 
+ 3e~"'eB~ ~x _ i--~15eu"" (eB")m2c 2 "(r"V + i e " ' ( x ' - -  xu )  e B ~  mc 

fOa eh _ Nq. 
_ # -6 2Nm2c _~ fOq [4k.k%,~,BO + ll(k.k%~.n~ + k.k~e~n~)B o] 

: , - - 4  . 2  eB~ 1 E (e"+'Lq" + ~,~ q - -  solo> + ,y w, ~ <OIL f + N q 

(32) 
A 

An explicit expression for ~ '+  l (k), is obtained by choosing a k system 
(Genga, 19883,b, 1992a,b, 19933-d, 1994)in which 

k = (0, 0, k) (33) 

B ~ = (B ~ sin 0, 0, B ~ cos 0) (34) 

and 

Landau gauge 

q = (q sin 0 cos O, q sin 0 sin qs, q cos o) 

1 
A ~ = ~ (0, BOx -- zB ~ O) 

is applied to obtain equation (34). 

(35) 

(36) 

3. LONG-WAVELENGTH LIMIT 

In the long-wavelength (k-~0) limit equations (32)-(35) become 

~l,  (k) = ~222(k) = 0 

~ 3 ( k  ) - , 2  = ? fOp 

612(k) = _~2 , (k  ) =/~ -2fO2fl cos 0 

~+3(k) = - ~ 3 2 ( k ) =  i?-2fO2 f~ sin 0 

~4~3(k) = ~3'(k) = 0 
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fi4H(k) = fi422(k) = _y -2  ~~ Ecor r - -  ,~  
m 

-, , ,_4~ ) = T 09p 6 E  F T2Ecorr - E R k 2 
m 

og~fl( 16 2 E  ) ~2(k)  = - ~ ( k )  = - i 7 - 6  - ~ m  6Ev + -~ y ~o~ + 16ER k a cos 0 

~3(k)  = _fi]Z(k) = _ iT -6 ~ f~ (30EF 2 4 2  ) 8m -- ]-5 y Ecorr + 44ER k:  sin 0 

(37) 

where EF = (P(F~ is the lowest Landau level Fermi energy per particle, 
Ecorr= N~q(4~e2/q2)gq is the correlation energy (which is negative), 
ER = (h/mN)~q# (4neZ/ogq)Nq. is the self-consistent magnetic radiation 
energy, and f~ = eB~ is the electron cyclotron frequency. 

The eigenstate 10) is expressed as (Johnson and Lippmann, 1949) 

IO)=(2~)_,/22_, expF(y-yo) 2 i__~] i ~- ~ + (38) 

with 

_ 2  e Yo = Px (40) 
e 

r 
y = - ey 

4. RADIATION EFFECT 

The radiation effect on the undamped high-frequency, quasi-one- 
dimensional quantum plasma dispersion with spins at T = 0 K is deter- 
mined by using the high-frequency sum rules (HFSR-s). The high-fre- 
quency modes under consideration are the "ordinary" mode and the 
"extraordinary" mode with cutoff frequency ~2 = [1 + (1 + 402/[~2) ~/2] 
propagating both along and across the external magnetic field, respectively. 

4.1. Propagation Parallel to Magnetic Field 

In this case, it is known (Genga, 1988a,b, 1992a,b, 1993a-d, 1994) 
that only the longitudinal and extraordinary modes with respective disper- 
sion relations 

e33(kfo)  = 1 + 0~33(k(D ) ~- 0 (41) 
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and 

[coil (kco) = n2(kco)] 2 - col2(kco) = 0 (42)  

exist. Application of a small perturbation to equations (41) and (42) leads 
to the ensuing plasmon frequency of oscillation of the form 

[ 4 )] 
co2(k)=7-1co2 l - - y  -5/2co--e 6EF-- yZE~o,~--E R k 2 (43) 

m 

for the longitudinal plasmon and 

-, ,2j" 1 2 I/2Fc2 COp2 (2  )] } 
= ~' + ~ Lco  + 7 - 2  mcol \15 Er - "/2ER k 2 (44)  

for the extraordinary mode, respectively. Equation (43) shows that radiation 
energy reduces the negative dispersion for finite k. In equation (44) it can 
be seen that it also reduces the positive refractive dispersion for finite k. 

4.2. Propagation Perpendicular to Magnetic Field 

In this case a pure transverse mode called the "ordinary mode" and a 
coupled transverse-longitudinal mode exist which are determined by dis- 
persion relations 

~11 (kco) - n 2(kco) = 0 (45) 

and 

[e22(kco) - n2(kco)]e33(kco) - g~3(kco) = 0 (46) 

respectively. When a small perturbation is applied to equation (45) it is 
found that there is no shift frequency, thus leading to the conclusion that 
there is no ordinary mode, contrary to expectation. However, for equation 
(6) the frequency of oscillations is of the form 

mco~ 3EF ~'2Ec~ - ER k2 (47)  

Equation (47) shows that the radiation energy enhances the positive 
refractive dispersion for finite k. 
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